banner

High temperature motor

Home

High temperature motor

  • How to Choose the Right Motor for Extreme Temperature Environments? Aug 18, 2025
    Choosing the right motor for extreme temperature environments requires careful consideration of several factors to ensure reliability, performance, and longevity. Here’s a step-by-step guide: 1. Define the Temperature Range High Temperatures: Above 40°C (104°F) can degrade insulation, lubricants, and bearings. Low Temperatures: Below -20°C (-4°F) can stiffen lubricants, embrittle materials, and reduce efficiency. Fluctuating Temperatures: Thermal cycling can cause expansion/contraction stresses. 2. Select the Right Motor Type AC Motors (Induction or Synchronous): Good for moderate extremes but may need modifications. Brushless DC (BLDC) Motors: Better for wide temperature ranges due to electronic control. Stepper Motors: Can work in extreme temps but may lose torque at very low temps. Servo Motors: High precision but may need special encoders for extreme conditions. 3. Insulation Class (For High Heat) Class B (130°C) – Standard for general purposes. Class F (155°C) – Better for sustained high heat. Class H (180°C) – Best for extreme heat (e.g., industrial ovens, aerospace). Special High-Temp Motors: Some can withstand 200°C+ (e.g., ceramic-insulated windings). 4. Bearing & Lubrication Considerations High-Temp: Use synthetic oils or dry lubricants (e.g., PTFE, silicone-based). Low-Temp: Choose low-viscosity lubricants that don’t freeze (e.g., synthetic hydrocarbons). Sealed Bearings: Prevent lubricant leakage in thermal cycling. 5. Material Selection Housings: Stainless steel or aluminum with thermal coatings. Magnets: Samarium-cobalt (SmCo) or neodymium (NdFeB) for high-temp resistance. Seals & Gaskets: Viton or silicone for flexibility in extreme temps. 6. Thermal Management Cooling Systems: For high temps, use forced air, liquid cooling, or heat sinks. Heaters (For Cold): Prevents condensation and lubricant freezing. Thermal Sensors: Built-in RTDs or thermistors for real-time monitoring. 7. Environmental Protection (IP Rating) Dust & Moisture: IP65+ for harsh environments. Explosion-Proof (ATEX/IECEx): Needed if flammable gases are present. 8. Power & Efficiency Adjustments Derating: High temps reduce motor efficiency; may need oversizing. Low-Temp Starting: Ensure sufficient torque at startup in cold conditions. 9. Supplier & Testing Choose manufacturers with experience in extreme-temperature motors.Ctrl-Motor has been engaged in the R&D, production and sales of vacuum motors, high and low temperature motors-related drivers, stepper motors, servo motors, and reducers for 11 years. The high and low temperature motors can be adapted to any extreme conditions from -196℃ to 300℃, and the vacuum degree can reach 10-7pa, we can provide 10^7Gy radiation protection and salt spray protection products.  Request test data (thermal cycling, cold start, endurance). Final Tips Consult Experts: Work with motor suppliers specializing in extreme environments. Prototype Testing: Validate performance in simulated conditions before full deployment. Maintenance Plan: Extreme conditions wear motors faster—schedule regular inspections. By carefully evaluating these factors, you can select a motor that performs reliably in extreme temperatures. 
  • Material Selection for Servo Motors in Low-Temperature Environments Aug 12, 2025
    When using servo motors in low-temperature environments, material selection must carefully consider the effects of cold conditions on mechanical properties, lubrication performance, electrical insulation, and structural stability. Below are key material selection points and design recommendations: 1. Metal Structural Materials Housing and Bearings: Aluminum Alloy: Commonly used grades such as 6061 or 7075, subjected to T6 heat treatment to improve low-temperature toughness. Avoid ordinary cast iron (increased brittleness). Stainless Steel: Grades like 304 or 316 offer low-temperature resistance and corrosion protection, suitable for extreme environments. Bearing Steel: Use low-temperature-specific bearing steel (e.g., GCr15SiMn) or hybrid ceramic bearings (silicon nitride) to prevent reduced ductility in cold conditions. Shaft Materials: Maraging Steel (e.g., 18Ni300): High strength with excellent low-temperature toughness. Low-Temperature Nickel Steel (e.g., 9% Ni Steel): Alternative for enhanced performance. 2. Lubricants Low-Temperature Grease: Base Oil: Polyalphaolefin (PAO) or ester-based oils with lithium complex or polyurea thickeners. Recommended Products: Mobilgrease 28 (-40°C to 150°C) Klüber Isoflex Topas NB 52 (-60°C to 120°C) Solid Lubricants: For ultra-low temperatures (<-60°C), consider molybdenum disulfide (MoS₂) or graphite coatings. 3. Electrical Components Coil Insulation: Magnet Wire: Polyimide (e.g., Kapton) or PTFE-coated wires; avoid PVC (becomes brittle at low temperatures). Impregnation Resin: Modified epoxy or silicone resins (e.g., Dow Corning 1-2577). PCB Substrates: High-Tg materials (e.g., FR-4 Tg≥170°C) or polyimide flexible circuits. 4. Seals and Elastomers Seals: Nitrile Rubber (NBR): Suitable above -40°C. Fluorocarbon (FKM) or Silicone Rubber (e.g., modified EPDM): Required below -40°C. Damping Components: Polyurethane (PU) or specialty silicone, with validation of low-temperature elasticity. 5. Other Critical Materials Magnets: Neodymium (NdFeB) magnets exhibit improved magnetic properties at low temperatures but require plating (e.g., Ni-Cu-Ni). Samarium cobalt (SmCo) magnets for ultra-low temperatures. Thermal Interface Materials: Low-temperature thermal grease (e.g., Bergquist SIL-Pad 2000) for motor-heatsink interfaces. 6. Design Validation Material Testing: Conduct impact tests (e.g., Charpy), shrinkage rate, and insulation resistance measurements at target temperatures. Assembly Tolerances: Account for differential thermal contraction (e.g., aluminum vs. steel CTE ratio ~2:1) via gaps or compensation structures. Step Cooling Tests: Gradually reduce temperature while monitoring torque fluctuations, bearing resistance, etc. Targeted material selection and rigorous validation ensure servo motors maintain precision, reliability, and longevity in low-temperature conditions. Practical applications should further optimize based on specific operational factors (e.g., cold-start frequency, load type). Zhonggu Weike (Shenzhen) Power Technology Co., Ltd. is a National Specialized, Sophisticated, and Innovative ("Little Giant") enterprise specializing in the R&D, manufacturing, and application of special motors for harsh environments, including vacuum, high temperature, cryogenic, deep cryogenic, and radiation conditions. Its product range includes stepper motors, servo motors, radiation-resistant motors, vacuum modules, and vacuum gearboxes, among other standardized series.
  • Analysis of the Relationship between Electric Motor Temperature Rise and Environmental Temperature Jul 16, 2025
    The relationship between the temperature rise, temperature, and ambient temperature of the electric motor can be clarified through the following analysis. 1.Basic Definitions Ambient Temperature (Tamb​)The temperature of the surrounding medium (typically air) where the motor operates, measured in °C or K. Motor Temperature (Tmotor)The actual temperature of the motor's internal components (e.g., windings, core) during operation, measured in °C or K. Temperature Rise (ΔT)The difference between the motor temperature and ambient temperature:ΔT=Tmotor−Tamb,Measured in K or °C (since temperature rise is a differential value, the units are interchangeable). 2. Mathematical Relationship                                                         Tmotor=Tamb+ΔT Temperature Rise (ΔT) depends on: Load Conditions: Higher load increases current and losses, leading to greater temperature rise. Cooling Capacity: Heat dissipation design (e.g., fans, heat sinks) or environmental conditions (e.g., ventilation) affect ΔT. Time: During startup or load changes, ΔT varies dynamically until reaching steady state. 3. Key Influencing Factors Impact of Ambient Temperature: If TambTamb​ increases, the motor temperature Tmotor rises for the same ΔT. High ambient temperatures may require derating the motor to prevent exceeding insulation limits. Limits of Temperature Rise: The motor's insulation class (e.g., Class B, F) defines the maximum allowable temperature (e.g., Class F = 155°C). Thus, the permissible ΔT must satisfy:ΔT≤Tmax−Tamb,where Tmax​ is the insulation material limit. 4. Practical Applications Design Phase: The maximum ΔT is determined based on insulation class. For example, a Class F motor (Tmax=155°C) in a 40°C environment has an allowable ΔT of 155−40=115K (accounting for hotspot allowances). Operation Monitoring: Abnormal temperature rise may indicate overloading, poor cooling, or insulation degradation. Cooling Conditions: Changes in ambient temperature or cooling efficiency dynamically affect ΔT. For instance, fan failure causes a sharp rise in ΔT. 5. Summary of Relationships Temperature rise (ΔT) results from the balance between power losses and cooling efficiency, independent of ambient temperature, but the actual motor temperature combines both. Ambient temperature sets the baseline for cooling—higher TambTamb​ reduces the allowable ΔT. Motor temperature is the ultimate outcome and must comply with insulation limits. Example Consider a Class B insulation motor (Tmax=130°C) operating under two scenarios: Ambient = 25°C, ΔT=80K: Tmotor=25+80=105°C (safe). Ambient = 50°C, same ΔT=80K:Tmotor=50+80=130°C (at limit, requiring load reduction). This relationship is fundamental to motor thermal protection design and lifespan evaluation.
Subscribe to the top gear newsletter!
submit

Copyright @2024 Zhonggu Weike (Shenzhen) Power Technology Co.Ltd., All Rights Reserved. Sitemap / Blog / Xml / Privacy Policy Network Supported

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

Contact Us